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Abstract We present a project management methodology4 wsif 3ad. for the selection of
wind turbines wake effect most influential parameters, who nec %o run wind farm project
for large energy conversion. Very frequently, the manage B these projects are not project
management professionals, so they need guidance to havg/Aauyonomy, using minimal time
and documentation resources. Therefore, agile_method 13 adapted to assist the project
management. Wind energy poses challenges sdch'c_¥he reduction in the wind speed due to
the wake effect by other turbines. If a tugbiri s wi hin the area of turbulence caused by
another turbine, or the area behind anotier,turbii. ¥the wind speed suffers a reduction and,
therefore, there is a decrease in the p Muctidn of electricity. In order to increase the
efficiency of a wind farm, analy# he the"| frameters, which have influence on the wake
effect, is one of the focal reseaxch arc_p,_To maximize the power produced in a wind farm,
it is important to determinefand analyze the most influential factors on the wake effects or
wake wind speeds since th¢ hffecthas most influence on the produced power. This pro-
cedure is typically calipd variaole selection, and it corresponds to finding a subset of the
full set of recorded variao. S that exhibits good predictive abilities. In this study, archi-
tecture for mod€ii \g corplex systems in function approximation and regression was used,
based on usifiy hd Wpe neuro-fuzzy inference system (ANFIS). Variable searching using
the ANE!S netwi was performed to determine how the five parameters affect the wake
wind sfieec Qur article answers the call for renewing the theoretical bases of wind farm
praject management in order to overcome the problems that stem from the application of
meo wds based on decision-rationality norms, which bracket the complexity of action and
iterae fons in projects.

D. Petkovié¢ (X)) - Z. Cojbagié - N. T. Pavlovié

Department for Mechatronics and Control, Faculty of Mechanical Engineering, University of Nis,
Aleksandra Medvedeva 14, 18000 Nis, Serbia

e-mail: dalibortc @gmail.com

S. H. Ab Hamid

Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala
Lumpur, Malaysia

@ Springer



464 Nat Hazards (2014) 74:463-475

Keywords Wind turbine - ANFIS - Project management - Wake effect - Variable
selection

1 Introduction

The project management field experiences a revolution with two main drivers. The firs
driver is a practical reconsideration of prescriptions rooted in the rationality of decisk
theory, which seem to generate technical and commercial failures, internal and externai
conflicts, and inadequate responses to unexpected events. Project practitioners re§, hnd td
these shortcomings by proposing new approaches, such as agile methods of partn pg
approaches, anchored in different rationalities. Researchers aim to bettel \accouit “for
project phenomena and outcomes by redirecting efforts away from devé Win, Wsificiples
for optimizing plans, contracts and charts, and toward understandingzhe spe e nature of
social relations, structures, and processes that occur in projects. Infpai_pular,/they seek to
draw upon fundamental sociological theories in order to deefia the | aderstanding of
project organizations. We present a project management met nd! s with agile method
for the selection of wind turbines wake effect most influential pa_peters, who need to run
wind farm project for large energy conversion.

Renewable energy sources have attracted lots of agention due to the technology
development, their no dependence on fossil fuels_and their)fiendliness to the environment.
The relative low values of the wind turbine-rgfed . acities available nowadays, compared
to conventional power station units, meanasthac_yhigl number of turbines must be installed
in a single site, a wind station or windJarmy, in G Jer to reach an installed capacity similar
to a conventional power station. Thisswii_Sturbine cluster disposition, more or less packed,
offers some economic advantages® Mated 1y the investment and to the plant operation and
maintenance costs (Grady et 2620055 "Rut the wind turbine compactness degree is limited
by spacing constrains due t wind shadow or wake decay effects (Marmidis et al. 2008),
that is, when two wind turbi_ s ars' placed too close one behind the other in the prevailing
wind direction, the t@plamount of generated power is less than the initially expected
individual power sum\af/u;- free air stream because the wind power in the air stream
available for e ownwind turbine is reduced due to the wind power extracted by the
upwind rotaf 1« i B5onzalez et al. 2010; Changshui et al. 2011). As a consequence, the
layout osyecific. wdividual wind turbine position determines the overall potential wind
energy extr._%ion efficiency of a wind farm (Ekonomou et al. 2012; Saavedra-Moreno et al.
2041;\Erqglu”and Seckiner 2012; Yin and Wang 2012). The wind turbine wake effect
dep ¥ds ot several different factors such as the terrain morphology, the wind farm area, the

'ind :ctbine size, the wind speed, the wind direction, and design of blades (Chen et al.
20 V] Ituarte-Villarreal and Espiritu 2011).

The wake effect is the key factor affecting the low efficiency of wind power production.
It is very important to predict the relationship between the wake wind speed (wake effect)
for various wind turbine and wind farm parameters.

If there is a lot of interference or wake generated by the wind turbines, the possibility of
mechanical failure would increase as well as the need for more maintenance actions, and
an inevitable reduction in power output. In addition to considering the impact of turbines
onrtherothersyitiissiimportanttostakesintoraccount the terrain, weather conditions, and wind
conditions in the region, such as speed and wind direction (Mokryani and Siano 2013;
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Rasuo and Bengin 2010). Several studies have been conducted in recent years in order to
maximize energy production and the efficiency of the turbines (Emami and Noghreh 2010;
Mustakerov and Borissova 2010).

To build a wind farm with the best features, it is desirable to select and analyze a subset
of parameters that are truly relevant or the most influential to the wing turbine wake effect
in order to minimalize the effect (Nagai et al. 2009; MacPhee and Beyene 2013).

This procedure is typically called variable selection, and it corresponds to finding a
subset of the full set of recorded variables that exhibits good predictive abilities. In this
study, architecture for modeling complex systems in function approximation and regrafs
sion was used, based on neural network. Neural networks can be defined as an architecturc
comprising massively parallel adaptive processing elements interconnected via st ctured
networks. Thus, the neural network models generated from these data must therefor hely
on how effectively the chosen sensor data represent the system. Therefore, in firder to,build
a model that can predict a specific process output, it is desirable to sflect jsubset of
variables that are truly relevant to this output. This procedure is typi€dily< hlled variable
selection, and it corresponds to finding a subset of the full set of e ded vdriables that
exhibits good predictive abilities (Castellano and Fanelli 2000; faieterle™ wal. 2003; Cibas
et al. 1996; Anderson et al. 2000). A solution to the variable s¢tect »n problem could be the
utilization of prior knowledge in order to screen out the iri¢_jvant variables. A more
advanced approach is to consider the variable selectiorifmgblem’as an optimization pro-
cedure via genetic algorithms (Donald 2002), where the §bjeciive is to minimize the error
between the true values and the model predictions of the §xplained (output) variables, by
selecting the proper explanatory (input) variabi€s.< he of the most powerful types of neural
network system is adaptive neuro-fuzzy i Jence| system (ANFIS) (Chan et al. 2011;
Kwong et al. 2009).

The objective of variable selectign &« ¥ireejold: improving the prediction performance
of the predictors, providing fastgfyand 1 we cost-effective predictors, and providing a
better understanding of the ungérlyi \process that generated the data, i.e., providing the
most influential parameters{on the prcdictor (Guyon and Elisseeff 2003; Despagne and
Massart 1998; Papadokons atakis et al. 2005). Variable searching using the ANFIS
network was performpgd to deicrmine how the wind turbine and wind farm parameters
affect the output wake, w . Dspeed. For the present study, analytical wake model named
as Jensen’s wald@nodél (Jensen 1983) is chosen, because momentum is considered as
conserved in€ ‘g wrake by this model. The analytical model was used for extracting
training gad che sing data for the ANFIS network. ANFIS (Jang 1993), as a hybrid
intellig¢nt™ stem’that enhances the ability to automatically learn and adapt, was used by
resgarchers f¢. modeling (Al-Ghandoor and Samhouri 2009; Singh et al. 2012; Petkovic¢
et 201D, Petkovi¢ and éojba§ié 2011), predictions (Hosoz et al. 2011; Khajeh et al.
009, »vakumar and Balu 2010), and control (Kurnaz et al. 2010; Ravi et al. 2011;

9d et al. 2010; Petkovié et al. 2012; Tian and Collins 2005) in various engineering
ystems. The basic idea behind these neuro-adaptive learning techniques is to provide a
method for the fuzzy modeling procedure to learn information about the data (Aldair and
Wang 2011; Dastranj et al. 2011). The ANFIS is one of the methods to organize the
fuzzy inference system with given input/output data pairs (Wahida Banu et al. 2011;
Grigorie and Botez 2009). This technique gives fuzzy logic the capability to adapt the
membership function parameters that best allow the associated fuzzy inference system to
track the given_input/output_data_(Akcayol 2004; Shamshirband et al. 2010, 2014;
Khoshnevisan et al. 2014).
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2 Materials and methods
2.1 Project management method

Project development organizations are continually challenged by the need to improve the
quality of the project products. Technologies are changing rapidly, and any project is
becoming scalable and complex. In addition, large-scale, distributed development poses
new challenges. To overcome the inability to meet the requirements and to deal with their,
rapid changing, project development requires the alignment of decisions on the strategi
tactical, and operational levels (Moe et al. 2012). Project development also requires
transition from specialized skills to the redundancy of functions and from ratial t
naturalistic decision making. Likewise, Wysocki (2009) agreed that by usi il
software development method, there are many factors that will influence thg \succes a
project. Agile method focuses on four manifestos, which are individua’%, aii hiterAtions,
working software, customer collaboration, and responding to change A“or roject, we
adapt the responding to change manifesto.
To determine the wind turbine wake effect, the project mustgsa
wind farm efficiency model. The purpose is to indicate all j @
eters of the wind turbine. Every single of variable carries an eq with factors to ensure
the model efficiency. Table 1 shows the parameters ired” However, the existing
parameters and equations are not enough to maximize th produced in a wind farm.
New technique or system is required to having new variables selection that enables to not

only maximize the wind turbine wake effect”buc Mso capable to predict the efficiency.
% sion test as in a cyclic process, which

erstanding the
ariables or param-

Then, ANFIS is chosen. The system work
changes of variables are made to ensu e bel yrariables are selected.

2.2 Wind farm efficiency model

with downstream distance. The wake has a radius, at the
urbjne radius R,, while R, is the radius of the wake in the
of the downstream wake; the relationship between R; and
e when the wake spreads downstream the radius Ry; that

The wake expands linearl
turbine, which is equal to
model. R, is consider
X is that downstream

ra

Wake effect parameters

Inputs/output Parameters description

Input 1 X: wake downstream distance
Input 2 R,: wake or rotor radius
Input 3 a: axial induction factor
Input 4 z: hub height

Input 5 zo: roughness of the surface

Oy LE AN fy I_i.lb I

u: wake wind speed
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Wind
turbine »
_' R, =aX +R,
4 : :
le X |
I 71
Fig. 1 Schematic of wake model
u = Up * (1)
In the above equation, we have
® uy is the mean wind speed o canoe explained as the free stream wind speed and
in this study was used ug="12
e axial induction factor i\ denotgd by a,which can be calculated from the Cr, thrust
coefficient. This can be ined from the expression
Cr = 4a(1 — a).
o Xis comi e distance downstream of the turbine, while R, is related with R, as
rep ed uspag following equation:

1—a
Ry =R,/ .
! 1—2a

o the entertainment constant and by using the following equation, it can be obtained as

05

o= .
In&
20

In the above equation, z is used to denote the hub height and roughness of the surface is
denoted by zo. The value for surface roughness varies from field to field. For plain terrains,

efined as in Table 1.
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Table 2 Roughness classes and lengths

Roughness  Roughness Energy Land scape

class length zp (m)  index (%)
0 0.0002 100 Water surface
1 0.03 52 Agricultural area, no fences or hedges, scattered buildings
2 0.1 39 Agricultural area, couple of houses
3 0.4 24 Villages, small town forests or very rough and uneven terrain
4 1.6 13 Very large cities with tall buildings

In the above Table 1, wake downstream distance X is in range 100-500 0
rotor radius is in range 10—40 m, axial induction factor is in range 0.2-0.4, aj’d hub hejzht
is in range 30-90 m. For parameter z,, five roughness classes of the surf: analyzed

as listed in Table 2.

2.3 Variable selection using adaptive neuro-fuzzy inference sy

Adaptive neuro-fuzzy inference system (ANFIS) can serve as or constructing a set
of fuzzy “IF-THEN” rules with appropriate membersli§m.functicn to generate the stipu-
lated input—output pairs. The membership functions ar to the input—output data.
ANFIS is about taking an initial fuzzy inference (FIS) sygtem and tuning it with a back-

possess human-like experti
better in changing environ

adaptation to environgents.
perform interfacing ai
ATLAB was used for the entire process of training and
ence system. Figure 2 shows an ANFIS structure for two inputs,

Fuzzy logic4gmlbox(i
evaluation o, i
&L ler 1

ts. It ANFIS, neural networks recognize patterns and help
inference systems incorporate human knowledge and
fon making.

Layer 2 Layer 3 Layer 4
l l l Layer 5
A Yy l
X " *
B Wi Wi Wi f1
: f
C *
* wy
y W2 W2 T T
Xy
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the most influential parameters on the wake wind speed and one output, estimated wake
wind speed. Here, the analysis was constrained on the selection of two of the most
influential parameters on the wake effect.

In this work, the first-order Sugeno model with two inputs and fuzzy IF-THEN rules of
Takagi and Sugeno’s type is used:

ifxisAandyis Cthenf; = pix+ q1y + 1.

The first layer consists of input variables membership functions (MFs), inputs 1 and 2.
This layer just supplies the input values to the next layer. In the first layer, every node is g
adaptive node with a node function O = p,z(x) and O = ucp(x) where py5(x) and pep (X5
are MFs. In this study, bell-shaped MFs with maximum equal to 1 and minimum egfal to
is chosen, such as

1

where {a;, b;, c;,d;} is the set of parameters set that in this laye® e referjed to as premise
parameters. In this layer, x and y are the inputs to nodes and the§* rJgsed the combinations
of the two most influential parameters of the wind turbine on the\ ywer coefficient.

The second layer (membership layer) checks for the ‘" Bmhts of each MFs. It receives
the input values from the first layer and acts as MFs td¢fepresent the fuzzy sets of the
respective input variables. Every node in the segand layer”is non-adaptive, and this layer
multiplies the incoming signals and sends theforoac ¥ out like w; = u,5(x) * pep(y). Each
node output represents the firing strengthaof < le.

The third layer is called the rule layér. {Each yode (each neuron) in this layer performs
the precondition matching of the fuz2y rv_ s, i/., they compute the activation level of each
rule, the number of layers being/t %al to jie number of fuzzy rules. Each node of these
layers calculates the weights~which 9mnormalized. The third layer is also non-adaptive,
and every node calculates tl: ratio of the rule’s firing strength to the sum of all rules’ firing

strengths like w} = Wva , I l. 2. The outputs of this layer are called normalized firing

u(x) = bell(x; a;, b;, ¢, d;) =

strengths.

The fourth laver is pdlled the defuzzification layer, and it provides the output values
resulting fromfthe infergrice of rules. Every node in the fourth layer is an adaptive node
with node fanci {0 C; = wixf = wi(pix + q;y + r;) where {p;, q;, r} is the parameter set
and in M Mayer 15 referred to as consequent parameters.

TMe 1ifth yer is called the output layer, which sums up all the inputs coming from the
fa€sthiayer dnd transforms the fuzzy classification results into a crisp (binary). The single
nodc . the fifth layer is not adaptive, and this node computes the overall output as the

ummation of all incoming signals

4 * Zi Wtf
0; Z wixf S
The hybrid learning algorithms were applied to identify the parameters in the ANFIS
architectures. In the forward pass of the hybrid learning algorithm, functional signals go
forward until layer 4 and the consequent parameters are identified by the least squares
estimate. In the backward pass, the error rates propagate backwards and the premise
parameters are updated by the gradient descent.
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3 Results

A comprehensive search was performed within the available inputs to select the set of the
most optimal combinations inputs (Table 1) that most influence the output parameter
(wake effect). Essentially, the functions build an ANFIS model for each combination and
train it for one epoch and report the performance achieved. In the beginning, the one most
influential input in predicting the output was determined (Fig. 3). It can be seen that the
wake downstream distance X has the most influence on the wake effect. The left-most input
variable in Fig. 3 has the least error or the most relevance with respect to the output.
The plot and results from the function (Fig. 3) clearly indicate the input variable wa

downstream distance X as the most influential for wake wind speed prediction. Theg ainin,

and checking errors are comparable, which indirectly suggests that there is n T
This means it can be increased and explored to select more than one input/oaram to
build the ANFIS model. To verify this, search for the optimal combiznfiti input

parameters can be performed.

The results in Fig. 4 indicate that input 1/input 2 (wake dow
radius R,) forms the optimal combination of two input attributes#£s
Further, search can be performed for the optimal combinatj @
The results in Fig. 5 indicate that input 1/input 2/input 3 (wai ad
rotor radius R,/axial induction factor a) forms the op co

disvance X/rotor
wake fect prediction.
hree Input parameters.

Fig. 3 Every input parameter’s

influence on the wake effect i —o—Training error —li—Checking error
& "

3
o
=
w
1
0.5
0
inl in2 in3 in5 ind
Parameters
Fi, nfluenc)” of two input 2.5
timal combinations —&—Training error —l—Checking error
tl effect 2
o 1.5
o
=
Mo
0.5

inl inl1 inl inl in2 in2 in2 in3 in3 ind
in2 in3 in5 in4 in3 in5 in4 in5 in4 in5
Two parameters combinations
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Fig. 5 Influence of three input 3.5
parameters optimal combinations 3

on the wake effect

—4—Training error
A —m—Checking error

2.5

Error

1.5

/
/

0.5

Table 3 ANFIS regression errors for wake effect prediction

inl inl inl inl inl inl in2 in2 in2 in
in2 in2 in3 in2 in3 in4 in3 in3
in3 in5 in5 in4 in4 in5 in5 i

Three parameters combination:

Input 1 1.471
Input 1/input 2 1.1215
Input 1/input 2/input 3 0.5184

Wake effect training error ake erfect checking error
:5964
1.5011

; ! 1.3424

-
N
L

-
L

> wind speed [m//s]

2

ANFIS predicted relationship between the most influential wake effect parameters and wake wind

ed

attributes for wake effect prediction. Table 2 shows

ANFIS regression errors for one input

and for optimal combinations of the two and three inputs. It may not be appropriate to use

more than two inputs for building the ANFIS model
was always preferred. Therefore, emphasis will be

since a model with a simple structure
focused on the two input ANFIS for

eters from the original training and checking
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400 1
X - wake
downsream 11.48
distance Mux g M .

v - wake wind speed
ANFIS
20

Mux

Rr - wake radius

Fig. 7 Matlab SIMULINK block diagram for the estimation of wake wind speed

The used function for all parameters only trains each ANFIS for a singlg{epoch t¢ oe
able to quickly find the right inputs. Now that the inputs are fixed, and thg ni_sber gan be
increased for epoch on ANFIS training (100 epochs) (Table 3).

The ANFIS input—output (decision) surface of the model for wal ) wina' peed (wake
effect) is shown in Fig. 6. The input—output surface shown is a_nonlifii % and monotonic
surface, and illustrates how the ANFIS model will respondgo  arying’/the wake down-
stream distance and wake or rotor radius or how the inputs ai ¥t .2 wake wind speed.

Two of the most influential wake effect parametesg are ini€mented in MATLAB
SIMULINK block diagram (Fig. 7) for fast estimation of v, ”wind speed.

4 Conclusion

The main contribution of this researef s /A pioject management methodology with agile
method, specific to the selection of wina® ybine wake effect most influential parameters,
which helps with the strategic p{ojc \formiulation, and is validated through the successful
implementation of each of tfe proposyd tools and activities.

Wind energy and conse_uently)wind farms constitute one of the greatest renewable
energy sources with rapid ¢ €ion all over world. One of the main problems in the
design and constructioy: wind farm, in order to maximize its energy production and its
efficiency, is thegantim¥i configurations of wind turbines to be installed. The grouping of
turbines in afind farm introduces two major issues: a wind turbine operating in the wake
of anotherAtrbi jhas a reduced power production and shortens the lifetime of the rotors.
The addiv_ mal turoulence in the wake could be a reason for increased material fatigue
throxgh flow xduced vibrations at the downstream rotor. There are many parameters that
hd » . bg included in the wake effect prediction and estimation.

M wwparameters (input variables) define wake wind speed (wake effect) such as wake

awnsiream distance, rotor or wake radius, hub height, surface roughness, axial induction
factor, and free wind speed as well. The inclusion of many input variables, however, has
rnany drawbacks: explaining the model is difficult, irrelevant variables act as noise, and
deteriorating the generalization capability of the model and data collecting can be much
more costly. It is therefore useful to invent methods that allow reducing the number of
input variables, thus reducing the complexity of the model, and possibly gaining better
predictive performances and insights into the relevance of the variables for the problem.

In this study, a variable selection method using ANFIS network with cyclic agile
method was performed to determine which wind turbine and farm parameters have the
most influence on the wake wind speed. The two selected parameters were used as inputs to
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ANFIS network for building a regression procedure to estimate the wake wind speed or
wake effect.

Simulations were run in MATLAB, and the results were observed on the corresponding
output blocks. The main advantages of the ANFIS scheme are computationally efficient,
well adaptable with optimization and adaptive techniques. This can also be combined with
expert systems and rough sets for other applications. ANFIS can also be used with systems
handling more complex parameters. Another advantage of ANFIS is its speed of operation,
which is much faster than in other control strategies; the tedious task of training MFs is
done in ANFIS.
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