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Abstract We present a project management methodology designed for the selection of

wind turbines wake effect most influential parameters, who need to run wind farm project

for large energy conversion. Very frequently, the managers of these projects are not project

management professionals, so they need guidance to have autonomy, using minimal time

and documentation resources. Therefore, agile method is adapted to assist the project

management. Wind energy poses challenges such as the reduction in the wind speed due to

the wake effect by other turbines. If a turbine is within the area of turbulence caused by

another turbine, or the area behind another turbine, the wind speed suffers a reduction and,

therefore, there is a decrease in the production of electricity. In order to increase the

efficiency of a wind farm, analyzing the parameters, which have influence on the wake

effect, is one of the focal research areas. To maximize the power produced in a wind farm,

it is important to determine and analyze the most influential factors on the wake effects or

wake wind speeds since the effect has most influence on the produced power. This pro-

cedure is typically called variable selection, and it corresponds to finding a subset of the

full set of recorded variables that exhibits good predictive abilities. In this study, archi-

tecture for modeling complex systems in function approximation and regression was used,

based on using adaptive neuro-fuzzy inference system (ANFIS). Variable searching using

the ANFIS network was performed to determine how the five parameters affect the wake

wind speed. Our article answers the call for renewing the theoretical bases of wind farm

project management in order to overcome the problems that stem from the application of

methods based on decision-rationality norms, which bracket the complexity of action and

interactions in projects.
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1 Introduction

The project management field experiences a revolution with two main drivers. The first

driver is a practical reconsideration of prescriptions rooted in the rationality of decision

theory, which seem to generate technical and commercial failures, internal and external

conflicts, and inadequate responses to unexpected events. Project practitioners respond to

these shortcomings by proposing new approaches, such as agile methods or partnering

approaches, anchored in different rationalities. Researchers aim to better account for

project phenomena and outcomes by redirecting efforts away from developing principles

for optimizing plans, contracts and charts, and toward understanding the specific nature of

social relations, structures, and processes that occur in projects. In particular, they seek to

draw upon fundamental sociological theories in order to deepen the understanding of

project organizations. We present a project management methodology with agile method

for the selection of wind turbines wake effect most influential parameters, who need to run

wind farm project for large energy conversion.

Renewable energy sources have attracted lots of attention due to the technology

development, their no dependence on fossil fuels, and their friendliness to the environment.

The relative low values of the wind turbine-rated capacities available nowadays, compared

to conventional power station units, mean that a high number of turbines must be installed

in a single site, a wind station or wind farm, in order to reach an installed capacity similar

to a conventional power station. This wind turbine cluster disposition, more or less packed,

offers some economic advantages related to the investment and to the plant operation and

maintenance costs (Grady et al. 2005). But the wind turbine compactness degree is limited

by spacing constrains due to wind shadow or wake decay effects (Marmidis et al. 2008),

that is, when two wind turbines are placed too close one behind the other in the prevailing

wind direction, the total amount of generated power is less than the initially expected

individual power sum at the free air stream because the wind power in the air stream

available for the downwind turbine is reduced due to the wind power extracted by the

upwind rotor turbine (Gonzalez et al. 2010; Changshui et al. 2011). As a consequence, the

layout or specific individual wind turbine position determines the overall potential wind

energy extraction efficiency of a wind farm (Ekonomou et al. 2012; Saavedra-Moreno et al.

2011; Eroglu and Seçkiner 2012; Yin and Wang 2012). The wind turbine wake effect

depends on several different factors such as the terrain morphology, the wind farm area, the

wind turbine size, the wind speed, the wind direction, and design of blades (Chen et al.

2013; Ituarte-Villarreal and Espiritu 2011).

The wake effect is the key factor affecting the low efficiency of wind power production.

It is very important to predict the relationship between the wake wind speed (wake effect)

for various wind turbine and wind farm parameters.

If there is a lot of interference or wake generated by the wind turbines, the possibility of

mechanical failure would increase as well as the need for more maintenance actions, and

an inevitable reduction in power output. In addition to considering the impact of turbines

on the others, it is important to take into account the terrain, weather conditions, and wind

conditions in the region, such as speed and wind direction (Mokryani and Siano 2013;
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Rašuo and Bengin 2010). Several studies have been conducted in recent years in order to

maximize energy production and the efficiency of the turbines (Emami and Noghreh 2010;

Mustakerov and Borissova 2010).

To build a wind farm with the best features, it is desirable to select and analyze a subset

of parameters that are truly relevant or the most influential to the wing turbine wake effect

in order to minimalize the effect (Nagai et al. 2009; MacPhee and Beyene 2013).

This procedure is typically called variable selection, and it corresponds to finding a

subset of the full set of recorded variables that exhibits good predictive abilities. In this

study, architecture for modeling complex systems in function approximation and regres-

sion was used, based on neural network. Neural networks can be defined as an architecture

comprising massively parallel adaptive processing elements interconnected via structured

networks. Thus, the neural network models generated from these data must therefore rely

on how effectively the chosen sensor data represent the system. Therefore, in order to build

a model that can predict a specific process output, it is desirable to select a subset of

variables that are truly relevant to this output. This procedure is typically called variable

selection, and it corresponds to finding a subset of the full set of recorded variables that

exhibits good predictive abilities (Castellano and Fanelli 2000; Dieterle et al. 2003; Cibas

et al. 1996; Anderson et al. 2000). A solution to the variable selection problem could be the

utilization of prior knowledge in order to screen out the irrelevant variables. A more

advanced approach is to consider the variable selection problem as an optimization pro-

cedure via genetic algorithms (Donald 2002), where the objective is to minimize the error

between the true values and the model predictions of the explained (output) variables, by

selecting the proper explanatory (input) variables. One of the most powerful types of neural

network system is adaptive neuro-fuzzy inference system (ANFIS) (Chan et al. 2011;

Kwong et al. 2009).

The objective of variable selection is threefold: improving the prediction performance

of the predictors, providing faster and more cost-effective predictors, and providing a

better understanding of the underlying process that generated the data, i.e., providing the

most influential parameters on the predictor (Guyon and Elisseeff 2003; Despagne and

Massart 1998; Papadokonstantakis et al. 2005). Variable searching using the ANFIS

network was performed to determine how the wind turbine and wind farm parameters

affect the output wake wind speed. For the present study, analytical wake model named

as Jensen’s wake model (Jensen 1983) is chosen, because momentum is considered as

conserved inside the wake by this model. The analytical model was used for extracting

training and checking data for the ANFIS network. ANFIS (Jang 1993), as a hybrid

intelligent system that enhances the ability to automatically learn and adapt, was used by

researchers for modeling (Al-Ghandoor and Samhouri 2009; Singh et al. 2012; Petković

et al. 2012; Petković and Ćojbašić 2011), predictions (Hosoz et al. 2011; Khajeh et al.

2009; Sivakumar and Balu 2010), and control (Kurnaz et al. 2010; Ravi et al. 2011;

Areed et al. 2010; Petković et al. 2012; Tian and Collins 2005) in various engineering

systems. The basic idea behind these neuro-adaptive learning techniques is to provide a

method for the fuzzy modeling procedure to learn information about the data (Aldair and

Wang 2011; Dastranj et al. 2011). The ANFIS is one of the methods to organize the

fuzzy inference system with given input/output data pairs (Wahida Banu et al. 2011;

Grigorie and Botez 2009). This technique gives fuzzy logic the capability to adapt the

membership function parameters that best allow the associated fuzzy inference system to

track the given input/output data (Akcayol 2004; Shamshirband et al. 2010, 2014;

Khoshnevisan et al. 2014).
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2 Materials and methods

2.1 Project management method

Project development organizations are continually challenged by the need to improve the

quality of the project products. Technologies are changing rapidly, and any project is

becoming scalable and complex. In addition, large-scale, distributed development poses

new challenges. To overcome the inability to meet the requirements and to deal with their

rapid changing, project development requires the alignment of decisions on the strategic,

tactical, and operational levels (Moe et al. 2012). Project development also requires a

transition from specialized skills to the redundancy of functions and from rational to

naturalistic decision making. Likewise, Wysocki (2009) agreed that by using the agile

software development method, there are many factors that will influence the success of a

project. Agile method focuses on four manifestos, which are individuals and iterations,

working software, customer collaboration, and responding to change. For this project, we

adapt the responding to change manifesto.

To determine the wind turbine wake effect, the project must start by understanding the

wind farm efficiency model. The purpose is to indicate all important variables or param-

eters of the wind turbine. Every single of variable carries an equation with factors to ensure

the model efficiency. Table 1 shows the parameters required. However, the existing

parameters and equations are not enough to maximize the power produced in a wind farm.

New technique or system is required to having new variables selection that enables to not

only maximize the wind turbine wake effect but also capable to predict the efficiency.

Then, ANFIS is chosen. The system works as a regression test as in a cyclic process, which

changes of variables are made to ensure the best variables are selected.

2.2 Wind farm efficiency model

The wake expands linearly with downstream distance. The wake has a radius, at the

turbine, which is equal to the turbine radius Rr, while R1 is the radius of the wake in the

model. R1 is considered as radius of the downstream wake; the relationship between R1 and

X is that downstream distance when the wake spreads downstream the radius R1; that

increases linearly proportional, X. The wake expands linearly with downstream distance, as

stated in Jensen’s model as shown in Fig. 1.

Following equation is used to determine the wake wind speed (wake effect) after wind

turbine rotor as it shown in Fig. 1:

Table 1 Wake effect parameters
Inputs/output Parameters description

Input 1 X: wake downstream distance

Input 2 Rr: wake or rotor radius

Input 3 a: axial induction factor

Input 4 z: hub height

Input 5 z0: roughness of the surface

Output u: wake wind speed
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u ¼ u0 � 1� 2a

1þ a X
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In the above equation, we have

• u0 is the mean wind speed or which can be explained as the free stream wind speed and

in this study was used u0 ¼ 12 m/s,

• axial induction factor is denoted by a,which can be calculated from the CT; thrust
coefficient. This can be determined from the expression

CT ¼ 4að1� aÞ:

• X is considered as the distance downstream of the turbine, while R1 is related with Rr as

represented using following equation:

R1 ¼ Rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a

1� 2a

r

:

• a the entertainment constant and by using the following equation, it can be obtained as

a ¼ 0:5

ln z
z0

:

In the above equation, z is used to denote the hub height and roughness of the surface is

denoted by z0. The value for surface roughness varies from field to field. For plain terrains,

the value for z0 ¼ 0:3:
In this study, the used five variables are defined as in Table 1.

Fig. 1 Schematic of wake model
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In the above Table 1, wake downstream distance X is in range 100–500 m, wake or

rotor radius is in range 10–40 m, axial induction factor is in range 0.2–0.4, and hub height

is in range 30–90 m. For parameter z0, five roughness classes of the surface were analyzed

as listed in Table 2.

2.3 Variable selection using adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system (ANFIS) can serve as a basis for constructing a set

of fuzzy ‘‘IF–THEN’’ rules with appropriate membership function to generate the stipu-

lated input–output pairs. The membership functions are tuned to the input–output data.

ANFIS is about taking an initial fuzzy inference (FIS) system and tuning it with a back-

propagation algorithm based on the collection of input–output data. The basic structure of a

fuzzy inference system consists of three conceptual components: a rule base, which con-

tains a selection of fuzzy rules; a database, which defines the membership functions used in

the fuzzy rules; and a reasoning mechanism, which performs the inference procedure upon

the rules and the given facts to derive a reasonable output or conclusion. These intelligent

systems combine knowledge, technique, and methodologies from various sources. They

possess human-like expertise within a specific domain—adapt themselves and learn to do

better in changing environments. In ANFIS, neural networks recognize patterns and help

adaptation to environments. Fuzzy inference systems incorporate human knowledge and

perform interfacing and decision making.

Fuzzy logic toolbox in MATLAB was used for the entire process of training and

evaluation of fuzzy inference system. Figure 2 shows an ANFIS structure for two inputs,

Table 2 Roughness classes and lengths

Roughness
class

Roughness
length z0 (m)

Energy
index (%)

Land scape

0 0.0002 100 Water surface

1 0.03 52 Agricultural area, no fences or hedges, scattered buildings

2 0.1 39 Agricultural area, couple of houses

3 0.4 24 Villages, small town forests or very rough and uneven terrain

4 1.6 13 Very large cities with tall buildings

yx

x y

w1
* f1

w2
* f2

w1
*

w2
*w2

w1

f

y

x

A

B

C

D

Layer 1

Layer 2 Layer 3 Layer 4
Layer 5

Fig. 2 ANFIS structure
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the most influential parameters on the wake wind speed and one output, estimated wake

wind speed. Here, the analysis was constrained on the selection of two of the most

influential parameters on the wake effect.

In this work, the first-order Sugeno model with two inputs and fuzzy IF–THEN rules of

Takagi and Sugeno’s type is used:

if x isA and y isC then f1 ¼ p1xþ q1yþ r1:

The first layer consists of input variables membership functions (MFs), inputs 1 and 2.

This layer just supplies the input values to the next layer. In the first layer, every node is an

adaptive node with a node function O ¼ lAB xð Þ and O ¼ lCD xð Þ where lAB xð Þ and lCD xð Þ
are MFs. In this study, bell-shaped MFs with maximum equal to 1 and minimum equal to 0

is chosen, such as

l xð Þ ¼ bell x; ai; bi; ci; dið Þ ¼ 1

1þ x� ci
ai

� �2
	 
bi

:

where ai; bi; ci; dif g is the set of parameters set that in this layer are referred to as premise

parameters. In this layer, x and y are the inputs to nodes and they represented the combinations

of the two most influential parameters of the wind turbine on the power coefficient.

The second layer (membership layer) checks for the weights of each MFs. It receives

the input values from the first layer and acts as MFs to represent the fuzzy sets of the

respective input variables. Every node in the second layer is non-adaptive, and this layer

multiplies the incoming signals and sends the product out like wi ¼ lAB xð Þ � lCD yð Þ: Each
node output represents the firing strength of a rule.

The third layer is called the rule layer. Each node (each neuron) in this layer performs

the precondition matching of the fuzzy rules, i.e., they compute the activation level of each

rule, the number of layers being equal to the number of fuzzy rules. Each node of these

layers calculates the weights, which are normalized. The third layer is also non-adaptive,

and every node calculates the ratio of the rule’s firing strength to the sum of all rules’ firing

strengths like w�
i ¼ wi

w1þw2
; i ¼ 1; 2: The outputs of this layer are called normalized firing

strengths.

The fourth layer is called the defuzzification layer, and it provides the output values

resulting from the inference of rules. Every node in the fourth layer is an adaptive node

with node function O4
i ¼ w�

i xf ¼ w�
i ðpixþ qiyþ riÞ where pi; qi; rf g is the parameter set

and in this layer is referred to as consequent parameters.

The fifth layer is called the output layer, which sums up all the inputs coming from the

fourth layer and transforms the fuzzy classification results into a crisp (binary). The single

node in the fifth layer is not adaptive, and this node computes the overall output as the

summation of all incoming signals

O4
i ¼

X

i

w�
i xf ¼

P

i wif
P

i wi

:

The hybrid learning algorithms were applied to identify the parameters in the ANFIS

architectures. In the forward pass of the hybrid learning algorithm, functional signals go

forward until layer 4 and the consequent parameters are identified by the least squares

estimate. In the backward pass, the error rates propagate backwards and the premise

parameters are updated by the gradient descent.
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3 Results

A comprehensive search was performed within the available inputs to select the set of the

most optimal combinations inputs (Table 1) that most influence the output parameter

(wake effect). Essentially, the functions build an ANFIS model for each combination and

train it for one epoch and report the performance achieved. In the beginning, the one most

influential input in predicting the output was determined (Fig. 3). It can be seen that the

wake downstream distance X has the most influence on the wake effect. The left-most input

variable in Fig. 3 has the least error or the most relevance with respect to the output.

The plot and results from the function (Fig. 3) clearly indicate the input variable wake

downstream distance X as the most influential for wake wind speed prediction. The training

and checking errors are comparable, which indirectly suggests that there is no overfitting.

This means it can be increased and explored to select more than one input parameter to

build the ANFIS model. To verify this, search for the optimal combination of 2 input

parameters can be performed.

The results in Fig. 4 indicate that input 1/input 2 (wake downstream distance X/rotor

radius Rr) forms the optimal combination of two input attributes for wake effect prediction.

Further, search can be performed for the optimal combination of three input parameters.

The results in Fig. 5 indicate that input 1/input 2/input 3 (wake downstream distance X/

rotor radius Rr/axial induction factor a) forms the optimal combination of three inputs

Fig. 3 Every input parameter’s
influence on the wake effect

Fig. 4 Influence of two input
parameters optimal combinations
on the wake effect
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attributes for wake effect prediction. Table 2 shows ANFIS regression errors for one input

and for optimal combinations of the two and three inputs. It may not be appropriate to use

more than two inputs for building the ANFIS model since a model with a simple structure

was always preferred. Therefore, emphasis will be focused on the two input ANFIS for

further examination. The selected input parameters from the original training and checking

datasets were then extracted.

Fig. 5 Influence of three input
parameters optimal combinations
on the wake effect

Table 3 ANFIS regression errors for wake effect prediction

Wake effect training error Wake effect checking error

Input 1 1.471 1.5964

Input 1/input 2 1.1215 1.5011

Input 1/input 2/input 3 0.5184 1.3424

Fig. 6 ANFIS predicted relationship between the most influential wake effect parameters and wake wind
speed
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The used function for all parameters only trains each ANFIS for a single epoch to be

able to quickly find the right inputs. Now that the inputs are fixed, and the number can be

increased for epoch on ANFIS training (100 epochs) (Table 3).

The ANFIS input–output (decision) surface of the model for wake wind speed (wake

effect) is shown in Fig. 6. The input–output surface shown is a nonlinear and monotonic

surface, and illustrates how the ANFIS model will respond to varying the wake down-

stream distance and wake or rotor radius or how the inputs affect the wake wind speed.

Two of the most influential wake effect parameters are implemented in MATLAB

SIMULINK block diagram (Fig. 7) for fast estimation of wake wind speed.

4 Conclusion

The main contribution of this research is a project management methodology with agile

method, specific to the selection of wind turbine wake effect most influential parameters,

which helps with the strategic project formulation, and is validated through the successful

implementation of each of the proposed tools and activities.

Wind energy and consequently wind farms constitute one of the greatest renewable

energy sources with rapid expansion all over world. One of the main problems in the

design and construction of a wind farm, in order to maximize its energy production and its

efficiency, is the optimal configurations of wind turbines to be installed. The grouping of

turbines in a wind farm introduces two major issues: a wind turbine operating in the wake

of another turbine has a reduced power production and shortens the lifetime of the rotors.

The additional turbulence in the wake could be a reason for increased material fatigue

through flow-induced vibrations at the downstream rotor. There are many parameters that

have to be included in the wake effect prediction and estimation.

Many parameters (input variables) define wake wind speed (wake effect) such as wake

downstream distance, rotor or wake radius, hub height, surface roughness, axial induction

factor, and free wind speed as well. The inclusion of many input variables, however, has

many drawbacks: explaining the model is difficult, irrelevant variables act as noise, and

deteriorating the generalization capability of the model and data collecting can be much

more costly. It is therefore useful to invent methods that allow reducing the number of

input variables, thus reducing the complexity of the model, and possibly gaining better

predictive performances and insights into the relevance of the variables for the problem.

In this study, a variable selection method using ANFIS network with cyclic agile

method was performed to determine which wind turbine and farm parameters have the

most influence on the wake wind speed. The two selected parameters were used as inputs to

Fig. 7 Matlab SIMULINK block diagram for the estimation of wake wind speed
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ANFIS network for building a regression procedure to estimate the wake wind speed or

wake effect.

Simulations were run in MATLAB, and the results were observed on the corresponding

output blocks. The main advantages of the ANFIS scheme are computationally efficient,

well adaptable with optimization and adaptive techniques. This can also be combined with

expert systems and rough sets for other applications. ANFIS can also be used with systems

handling more complex parameters. Another advantage of ANFIS is its speed of operation,

which is much faster than in other control strategies; the tedious task of training MFs is

done in ANFIS.
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Moe NB, Aurum A, Dybå T (2012) Challenges of shared decision-making: a multiple case study of agile
software development. Inf Softw Technol 54:853–865

Mokryani G, Siano P (2013) Optimal wind turbines placement within a distribution market environment.
Appl Soft Comput 13:4038–4046

Mustakerov I, Borissova D (2010) Wind turbines type and number choice using combinatorial optimization.
Renew Energy 35:1887–1894

Nagai BM, Ameku K, Roy JN (2009) Performance of a 3 kW wind turbine generator with variable pitch
control system. Appl Energy 86:1774–1782

Papadokonstantakis S, Machefer S et al (2005) Variable selection and data pre-processing in NN modelling
of complex chemical processes. Comput Chem Eng 29:1647–1659
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